Advanced Instrumentation, Information, and Control Systems Technologies

Nuclear Power Plant
Control Room Modernization
Ken Thomas

Idaho National Laboratory October 13, 2016

Light Water Reactor Sustainability R&D Program

Control Room Modernization - Objectives

- Address obsolescence and reliability issues of legacy analog control rooms (potential nuclear plant life-limiting issue)
- Enhance operator performance with new digital technologies

Improve operational support functions with a seamless digital

environment

Resulting in

- Increased capacity factors
- Reduced O&M costs
- Enhanced nuclear safety
- Improved workforce job satisfaction and retention

Control Room Modernization R&D

- Utility Partners
 - Southern California Edison
 - Duke Energy Corporation
 - Arizona Public Service Company
 - Southern Company
 - Exelon Nuclear Corporation
- Research Collaborators
 - IFE Halden Reactor Project
 - Electric Power Research Institute
 - Vanderbilt University
 - Korea Atomic Energy Research Institute
 - Engineering and Human Factors Consultants

Human System Simulation Laboratory (HSSL)

Partnership with Arizona Public Service

- APS is undertaking significant upgrades of important control systems under their Strategic Modernization Program at their Palo Verde Nuclear Generating Station.
- They have partnered with the LWRS Program in control room modernization as part of these upgrades.
- This project will extend over 10 years in 5 major phases.
- This represents the first major control room modernization in the current operating fleet.

Three Dimensional Modeling

Feedwater and Turbine Systems Original Analog Control Board

Step 1 – Model Existing CB

Step 2 – Delete Devices Being Replaced and Model New HMI

Step 3 – Rearrange Remaining Devices and HMI for Improved Human Factors

Step 4 – Optimize Human Factors and Practical Considerations

Human Factors Verifications

Feedwater and Turbine Systems Control Board Final Concept

Light Water Reactor Sustainability

Reactor Coolant System Control Board

Reactor Coolant System Control Board Final Concept

Hybrid Control Room End-State Concept

Operator Studies in HSSL

- Utility partner brings operator teams to participate in structured studies in the HSSL to validate control room designs, uncover human error traps, and improve usability.
- Studies use a variety of objective and subjective measures to confirm effects on workload, situational awareness, etc.

Human-System Interface (HSI)

Computer Assisted Virtual Environment

Fully-Integrated Control Room

- Conceptual design of a compact control room similar to what is now provided in new nuclear builds (e.g. AP-1000)
- All control actions are from operator consoles in front of large overview displays for plant-level functional status.
- Have defined a migration path from conventional control

rooms to compact design.

 Cost benefit is higher due to substantial elimination of analog control devices.

Questions?

